skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Kaihua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The 2,2′-bipyridyl-6,6′-dicarboxylate ligand (bdc) has been shown in prior work to effectively capture the uranyl(VI) ion, UO2 2+, from aqueous solutions. However, the redox properties of the uranyl complex of this ligand have not been addressed despite the relevance of uranium-centered reduction to the nuclear fuel cycle and the presence of a bipyridyl core in bdc, a motif long recognized for its ability to support redox chemistry. Here, the bdc complex of UO2 2+ (1-UO2) has been synthetically prepared and isolated under nonaqueous conditions for the study of its reductive chemical and electrochemical behavior. Spectrochemical titration data collected using decamethylcobaltocene (Cp*2Co) as the reductant demonstrate that 1e− reduction of 1-UO2 is accessible, and companion near-infrared and infrared spectroscopic data, along with theoretical findings from density functional theory, provide evidence that supports the accessibility of the U(V) oxidation state. Data obtained for control ruthenium complexes of bdc and related polypyridyl dicarboxylate ligands provide a counterpoint to these findings; ligand-centered reduction of bdc in these control compounds occurs at potentials more negative than those measured for reduction of 1-UO2, further supporting the generation of uranium(V) in 1-UO2. Taken together, these results underscore the usefulness of bdc as a ligand for actinyl ions and suggest that it could be useful for further studies of the reductive activation of these unique species. 
    more » « less
  2. Abstract This work presents the first simulations of the full optical rotation (OR) tensor at coupled cluster with single and double excitations (CCSD) level in the modified velocity gauge (MVG) formalism. The CCSD‐MVG OR tensor is origin independent, and each tensor element can in principle be related directly to experimental measurements on oriented systems. We compare the CCSD results with those from two density functionals, B3LYP and CAM‐B3LYP, on a test set of 22 chiral molecules. The results show that the functionals consistently overestimate the CCSD results for the individual tensor components and for the trace (which is related to the isotropic OR), by 10%–20% with CAM‐B3LYP and 20%–30% with B3LYP. The data show that the contribution of the electric dipole–magnetic dipole polarizability tensor to the OR tensor is on average twice as large as that of the electric dipole–electric quadrupole polarizability tensor. The difficult case of (1S,4S)‐(–)‐norbornenone also reveals that the evaluation of the former polarizability tensor is more sensitive than the latter. We attribute the better agreement of CAM‐B3LYP with CCSD to the ability of this functional to better reproduce electron delocalization compared with B3LYP, consistent with previous reports on isotropic OR. The CCSD‐MVG approach allows the computation of reference data of the full OR tensor, which may be used to test more computationally efficient approximate methods that can be employed to study realistic models of optically active materials. 
    more » « less